WP2 - Qualitative and quantitative analysis of new psychoactive substances (NPS) in Europe, with focus on synthetic opioids and prescriptions opioids

Deliverable 6

Analytical procedure for qualitative analysis of NPS

Qualitative analysis of new psycoactive substances (NPS) in urban wastewater (WW) and pooled urine samples was performed by solid-phase extraction (SPE) followed by liquid-chromatographyhigh resolution-mass spectrometry (LC-HRMS). A new "suspect" screening approach has been developed for the qualitative analysis of 253 priority NPS, adopting a workflow previously validated in our lab (Salgueiro-González, 2019). The activities to perform the qualitative analysis of NPS are described in detail below.

Selection of "priority NPS"

The Early Warning Systems (EWS) of different organizations (i.e. United Nation Office on Drugs and Crime (UNODC), the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) and the National EWS of Italy) reported more than 550 NPS between 2018 and 2019. At the beginning of the EuSeME project, we created a database of these 550 NPS (Deliverable 1), collecting information on their chemical properties, the first alert of intoxication/seizure (date and place) and additional information (e.g. poly-drug use, human metabolism). Among them, a list of "priority NPS" was selected considering the NPS most frequently and recently recorded in the market or during seizures. This list of "priority NPS" has been updated every 6-months within the project (last update in September 2021), considering all reports published by the EWS of EMCDDA and Italy. The final list of 253 "priority NPS" used for the screening analysis is shown in Annex 1 of this Deliverable.

Sample preparation

Sample (pre)treatment protocols for urban WW and pooled urine have been adapted from previous works (Castiglioni et al, 2021; Gjerde et al, 2019) and applied both for qualitative (present deliverable) and quantitative NPS analysis (Deliverable 7).

<u>Urban wastewater</u>. WW samples were vacuum-filtered and pooled for analyses. Pooled weekend and weekday samples (50 mL) were prepared mixing fixed aliquots from each day, as follows: Saturday, Sunday and Monday are pooled for "weekend" composite sample and Tuesday to Friday for "week" composite sample.

WW samples (50 mL) were acidified to pH~2 with HCl (37 %), spiked with internal standards (2 ng of each compound), and extracted by SPE using Oasis[®] MCX cartridges (150 mg, 6 cc). Before the extraction, MCX cartridges were conditioned with 10 mL methanol (MeOH), 5 mL Milli-Q water, and 5 mL water acidified to pH 2. Samples were manually loaded at a flow rate of about 5 mL min⁻¹. MCX cartridges were vacuum-dried for 10 min and eluted with 2 mL of MeOH and 2 mL of a 2% ammonia solution in MeOH. Eluates were dried under a gentle nitrogen stream, reconstituted in 80 µL of a mixture of Milli-Q water:MeOH (90:10), centrifuged for 2 min at 2500 rpm, and transferred into glass vials for LC-HRMS analysis.

<u>Urine</u>. One mL of pooled urine sample was spiked with internal standard (2 ng of each compound) and hydrolysed with β -glucuronidase at 55°C for 2 h (pH=4.5-5, buffer acetic acid/ammonium acetate). Then, urine extracts were acidified to pH~2 with HCl (9 %) and extracted by SPE using Oasis[®] MCX cartridges (60 mg, 3 cc). Before the extraction, MCX cartridges were conditioned with 6 mL MeOH, 3 mL Milli-Q water and 3 mL of Milli-Q water acidified to pH 2. After sample loading, MCX cartridges were vacuum-dried for 5 min and eluted with 1 mL of MeOH and 1 mL of a 2% ammonia solution in MeOH. Eluates were dried under a gentle nitrogen stream, reconstituted in 200 µL of a mixture of Milli-Q water:MeOH (90:10), centrifuged for 2 min at 2500 rpm, and transferred into glass vials for LC-HRMS analysis.

HRMS analysis

LC-HRMS analysis was done with an Agilent 1200 series HPLC coupled to a Q-ExactiveTM Hybrid Quadrupole-OrbitrapTM (Thermo Scientific, Bremen, Germany) mass spectrometer equipped with a heated electrospray ionization (HESI) source. LC separation was performed at room temperature using an XBridge[®] C₁₈ column (2.1x100 mm, 3.5 μ m) from Waters Corporation (Milford, MA, USA) and a dual eluent system consisting of (A) 0.1 % formic acid (FA) in MilliQ water and (B) acetonitrile (ACN), at a constant flow rate of 200 μ L min⁻¹. The gradient was: 0 min (10% B), 20 min (60% B), 25 min (99% B), 30 min (99% B) and 31 min (10% B), the initial conditions were finally kept for 6 min in order to re-equilibrate the column (total run time 37 min). The column temperature was set at 30°C and the volume of injection was 8 μ L. HRMS analyses were carried out in positive mode, under the following working conditions: sheath gas pressure 45 bar, auxiliary gas pressure 5 bar, auxiliary gas temperature 160°C, ion spray voltage 3.5 kV, heated capillary temperature 320°C, S-lens RF 60. Data were acquired using Thermo XcaliburTM 4.0

software (Thermo Scientific, Bremen, Germany). More details about MS and MS² parameters can be found in a previous work (Salgueiro-González, 2019).

Identification criteria and workflow for screening analysis

The identification of "suspect NPS" was performed according to the criteria proposed by different guidelines (WADA, 2010; SANTE, 2019). It includes key parameters like the accurate mass of the most abundant ion (normally protonated molecule) with delta mass < 5 ppm, the isotope pattern, and at least one product ion identified with a delta mass lower than 5 ppm. When reference standards are available, the retention time (RT) is also considered for identification with an acceptable variability of $\pm 2\%$ min.

The screening workflow comprises three main steps (Figure 1) (Salgueiro-González, 2019):

- (i) *Full-scan analysis* (70,000 resolution), looking for molecules with a mass-to-charge ratio (m/z) between 60 and 900. HRMS chromatograms are screened using the software Trace Finder[™] 3.1 (Thermo Scientific, Bremen, Germany) and "preliminary suspects NPS" are identifying considering the accurate mass ion of the "priority NPS" (m/z of the protonated molecule with delta mass < 5 ppm) and their expected RT.
- (ii) MS^2 analysis. "Preliminary suspects NPS" are fragmented in a second step, and accurate mass product ions are considered for identification. MS^2 experiments (35,000 resolution) were done with the collision-induced dissociation (CID) mode by applying normal collision energy (NCE) values of 35 and 50 V and with a precursor ion isolation window of ± 3.0 m/z that ensures a good sensitivity avoiding interferences. Firstly, a data-dependent analysis mode (FullMS-ddMS²) is applied, in which the first data event

is a full-scan MS (scan range 60–900 m/z), and the next *n* events were MS^2 scans of the *n* most intense m/z recorded in the first event among the specific list of "preliminary suspect NPS". If fragmentation is not obtained, a data-independent analysis (DIA) mode will be employed, indicating the accurate masses of "suspect NPS" to be confirmed as targets for the acquisition of MS^2 scans during the selected retention time window.

(iii) (*Tentative*) identification of "suspect NPS". Finally, different confidence levels of identification are established according to the scheme proposed by Schymanski et al for the chemical identification by HRMS (Schymanski, 2014): Level 1, assigned when reference standards are available and <u>confirmation</u> is possible by matching RT, MS and MS² spectra. Level 2, assigned when no reference standard is available, but the <u>detection</u> is still possible, as the chemical structure can be elucidated from diagnostic evidence or with matching spectra data (library/database or literature). Level 3, assigned to a <u>tentative identification</u> when the information is not enough to confirm the chemical structure of NPS, but the accurate mass ion is found and some product ions are identified with the potential chemical structure. In levels 2-3, references standards are mandatory for confirmation purposes.

Figure 1. Scheme of suspect screening workflow and confidence levels of identification (1-3) using a Q-Exactive mass analyzer.

REFERENCES

Castiglioni S, Salgueiro-González N, Bijlsma L, Celma A, Gracia-Lor E, Beldean-Galea MS, Mackul'ak T, Emke E, Heath E, Kasprzyk-Hordern B, Petkovic A, Poretti F, Rangelov J, Santos MM, Sremački M, Styszko K, Hernández F, Zuccato E. New psychoactive substances in several European populations assessed by wastewater-based epidemiology. Water Res. 2021 May 1;195:116983. doi: 10.1016/j.watres.2021.116983

Gjerde H, Gjersing L, Baz-Lomba JA, Bijlsma L, Salgueiro-González N, Furuhaugen H, Bretteville-Jensen AL, Hernández F, Castiglioni S, Johanna Amundsen E, Zuccato E. Drug Use by Music Festival Attendees: A Novel Triangulation Approach Using Self-Reported Data and Test Results of Oral Fluid and Pooled Urine Samples. Subst Use Misuse. 2019;54(14):2317-2327. doi: 10.1080/10826084.2019.1646285

European Commission. Guidance document on analytical quality control and method validation procedures for pesticide residue and analysis in food and feed. SANTE/12682/2019 (2019). Directorate General for Health and Food Safety.

Salgueiro-González N, Castiglioni S, Gracia-Lor E, Bijlsma L, Celma A, Bagnati R, Hernández F, Zuccato E. Flexible high resolution-mass spectrometry approach for screening new psychoactive substances in urban wastewater. Sci Total Environ. 2019 Nov 1;689:679-690. doi: 10.1016/j.scitotenv.2019.06.336

Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014 Feb 18;48(4):2097-8. doi: 10.1021/es5002105.

World Anti-Doping Agency (WADA), L.C., 2010. WADA Technical Document – TD2010IDCR. Identification criteria for qualitative assays incorporating column chromatography and mass spectrometry.

ANNEX 1. Database of "priority NPS" selected for screening analysis.

Number	NPS Categories	Compound	Formula
1		1-PEA/1-Phenethylamine	C8H11N
2	•	2C-B-FLY	C12H14BrNO2
3		2C-C	C10H14CINO2
4		2C-D	C11H17NO2
5		2С-Е	C12H19NO2
6		2С-Н	C10H15NO2
7		2C-I	C10H14INO2
8		2С-Р	C13H21NO2
9		2-FA/2-Fluoroamphetamine	C9H12FN
10		2-FEA/2-fluoroethylamphetamine	C11H16FN
11		2-FMA/ 2-Fluoromethamphetamine	C10H14FN
12		2-PEA/PEA/2-Phenethylamine	C8H11N
13	S	3-FEA / 3-fluoroethylamphetamine	C11H16FN
14	nine	3-FMA/3-Fluoromethamphetamine	C10H14FN
15	ylan	4-FA/4-Fluoroamphetamine	C9H12FN
16	ethy	4-FEA/ 4-fluoroethylamphetamine	C11H16FN
17	nen	4-FMA/ 4-Fluoromethamphetamine	C10H14FN
18	P	4-MA/4-Methylamphetamine	C10H15N
19		5-APB/ 5-(2-Aminopropyl)benzofuran	C11H13NO
20		5-EAPB/5-(2-ethylaminopropyl) benzofuran	C13H17NO
21		5-MAPB/N-Methyl-5-APB	C12H15NO
22		25D-NBOMe	C19H25NO3
23		25E-NBOH	C19H25NO3
24		25I-NBOH	C17H20INO3
25		bk-2C-B	C10H12BrNO3
26		DOC/2,5-Dimethoxy-4-chloroamphetamine	C11H16CINO2
27		DOI/2,5-Dimethoxy-4-iodoamphetamine	C11H16INO2
28		M-alpha	C11H15NO2
29	-	MPA/Methiopropamine	C8H13NS
30		N,N-dimethylphenethylamine	C10H15N
31		3-CMC/3-chloromethcathinone	C10H12CINO
32	es c	3-CEC/3-chloroethcathinone	C11H14CINO
33	Synthetic cathinone	3F-α-PVP/3F-α-Pyrrolidinovalerophenone	C15H20FNO
34		3-FMC/3-Fluoromethcathinone	C10H12FNO
35		3-MEC/3-methylethcathinone	C12H17NO
36		4-BMC/4-Bromomethcathinone/ Brephedrone	C10H12BrNO

37	4-CBC/4-chlorobutylcathinone	C13H18CINO
38	4-CDMC/4-chloro-N,N-dimethylcathinone	C11H14CINO
39	4-CEC/4-chloroethcathinone	C11H14CINO
40	4-CMC/ 4-chloromethcathinone/Clephedrone	C10H12CINO
41	4-CPD/4-Chloropentedrone	C12H16CINO
42	4-Cl-α-PVP/4-chloro-α-pyrrolidinopentiophenone	C15H20CINO
43	4-EMC/4-Ethylmethcathinone	C12H17NO
44	4-FPD/ 4-Fluoropentedrone	C12H16FNO
45	4-F-α-PHP/4-fluoro-alpha-pyrrolidinohexanophenone	C16H23FNO
46	4F-α-PVP/4-fluoro-alpha-pyrrolidinovalerophenone	C15H20FNO
47	4-MDMC/4-methyl-N,N-dimethylcathinone	C12H17NO
48	4-MEAPP/ 4-Methyl-alpha-ethylaminopentiophenone	C14H21NO
49	4-MeO-alpha-POP/4-MeO-α-PV9/4-methoxy-alpha- pyrolidinooctanophenone	C19H29NO2
50	4-MPD/4-Methylpentedrone	C13H19NO
51	5-DBFPV/5-dihydrobenzofuranpyrovalerone	C17H23NO2
52	Benzylone /BMDP	C17H17NO3
53	Dibutylone/ bk-DMBDB	C13H17NO3
54	Dimethylone/bk-MDDMA	C12H15NO3
55	Dipentylone/bk-DMBDP/N,N-dimethylpentylone	C10H13NO
56	Ephylone/ N-ethylpentylone	C14H19NO3
57	Eutylone/bK-MDEA	C13H17NO3
58	IsoPentedrone	C12H17NO
59	MDBVP/N-butyl pentylone	C16H23NO3
60	MDPBP/3,4-Methylenedioxy-α-pyrrolidinobutyrophenone	C15H19NO3
61	MDPHP/3,4-methylendioxy-α-pyrrolidinhexaphenone	C17H23NO3
62	Mexedrone	C12H17NO2
63	MPHP/4-Methyl-a-pyrrolidinohexiophenone	C17H25NO
64	MPPP/MePPP/4-Methyl-α-pyrrolidinopropiophenone	C14H19NO
65	NBH/N-butyl hexedrone	C16H25NO
66	NEH/ N-ethyl hexedrone	C14H21NO
67	N-ethyl pentedrone/ α -EAPP/alpha-ethylaminopentiophenone	C13H19NO
68	N-methylbenzedrone/N-methyl-4-MBC	C18H21NO
69	N,N-diethylpentylone	C16H23NO3
70	Nor-mephedrone/4-methylcathinone	C10H13NO
71	Thiothinone/bk-MPA	C8H11NOS
72	TH-PVP/3,4-tetramethylene-α-PVP	C19H27NO
73	α-PEP/α-pyrrolidinoheptaphenone	C17H25NO
74	α-PiHP/α-Pyrrolidinoisohexanophenone	C16H23NO

75		α -PHP/ α -pyrrolidinohexanophenone	C16H23NO
76	-	α-PPP/alpha-pyrrolidinovalerophenone	C13H17NO
77	-	α -PVT/ α -Pyrrolidinopentiothiophenone	C13H19NOS
78		4F-MDMB-BICA	C20H27FN2O3
79		4F-MDMB-BINACA/4F-MDMB-BUTINACA	C19H26FN3O3
80		5CI-AB-PINACA/ 5CI-ABP	C18H25CIN4O2
81		5CI-AKB48/ 5CI-APINACA	C23H30CIN3O
82		5F-AB-PINACA	C18H25FN4O2
83		5F-ADBICA/5F-ADB-PICA	C20H28FN3O2
84		5F-ADB/ 5F-MDMD-PINACA	C20H28FN3O3
85		5F-ADB-PINACA	C19H27FN4O2
86	<u>v</u>	5F-AKB57/ 5F-APINAC	C23H29FN2O2
87	abinoid	5F-AMB-PINACA/5F-AMB/5F-MMB-PINACA/5F-AMP	C19H26FN3O3
88	anna	5F-APINACA / 5F-AKB-48	C23H30FN3O
89	hetic ca	5F-CUMYL-P7AICA/CUMYL-5F-P7AICA/SGT-263	C22H26FN3O
90	Synt	5F-CUMYL-PeGaClone	C25H27FN2O
91	_	5F-CUMYL-PICA/SGT-67	C23H27FN2O
92	_	5F-CUMYL-PINACA/CUMYL-5F-PINACA/SGT-25	C22H26FN3O
93	-	5F-EDMB-PINACA	C21H30FN3O3
94		5F-EMB-PINACA/5F-AEB	C20H28FN3O3
95		5F-INPB-22/5F-PB-22 indazole/5F-NPB-22	C22H20FN3O2
96		5F-MDMB-PICA/ 5F-MDMB-2201	C21H29FN2O3
97		5F-MMB-PICA/5F-AMB-PICA/I-AMB/ MMB-2201	C20H27FN2O3
98		5F-MPP-PICA/ MPHP-2201/5F-MPhP-PICA	C24H27FN2O3
99		5F-PB-22/5F-QUPIC	C23H21FN2O2
100		AB-FUBINACA	C20H21FN4O2

101	AB-PINACA	C18H26N4O2
102	ADB-CHMINACA/ MAB-CHMINACA	C21H30N4O2
103	AM-694	C20H19FINO
104	AM-2201	C24H22FNO
105	AMB-CHMINACA/MA-CHMINACA	C21H29N3O3
106	APINACA / AKB-48	C23H31N3O
107	CUMYL-4CN-BINACA/4-CN-BINACA-ADB/CUMYL-CB- PINACA/CUMYL-CYBINACA/ SGT-78	C22H24N4O
108	DMBA-CHMINACA	C21H29N3O3
109	EMB-FUBINACA/AEB-FUBINACA/FU-AEB/ FUB-AEB	C22H24FN3O3
110	FDU-PB-22	C26H18FNO2
111	FUB-144/ FUB-UR-144	C23H24FNO
112	FUB-PB-22	C25H17FN2O2
113	JWH-018 / AM678	C24H23NO
114	JWH-073	C23H21NO
115	JWH-210	C26H27NO
116	JWH-250	C22H25NO2
117	MAM-2201/JWH-122 (5-fluoropentyl)/AM-2201 4- methylnaphthyl analog	C25H24FNO
118	MBA-CHMINACA/ AMB-CHMINACA/MAB-AB-CHMINACA/ MMB- CHMINACA	C20H27N3O3
119	MDMB-4en-PINACA/ 5-CL-ADB-A	C20H27N3O3
120	MDMB-CHMCZCA/EGMB-CHMINACA	C27H34N2O3
121	MDMB-CHMINACA	C22H31N3O3
122	MMB-022/AMB-4en-PICA/ AMB-P4EICA	C20H26N2O3

123		MMB-CHMICA/AMB-CHMICA	C22H30N2O3
124		MMB-FUBINACA/FUB-MMB/AMB-FUBINACA/FUB-AMB	C21H22FN3O3
125		NM-2201 / CBL-2201	C24H22FNO2
126		RCS-4	C21H23NO2
127		THJ-018/ JWH-018 indazole analogue	C23H22N2O
128		THJ-2201/ AM-2201 indazole	C23H21FN2O
129		UR-144 /KM-X1	C21H29NO
130		XLR-11 /5-Fluoro UR-144	C21H28FNO
131		4-AcO-DET/4-Acetoxy-N,N-diethyltryptamine	C16H22N2O2
132		4-AcO-MET/4-acetoxy-N-methyl-N-ethyltryptamine	C15H20N2O2
133	SS	4-HO-DET/4-Hydroxy-N,N-diethyltryptamine	C14H20N2O
134	nine	4-HO-MET/4-Hydroxy-N-methyl-N-ethyltryptamine	C13H18N2O
135	otan	4-HO-MiPT/4-hydroxy-N-isopropyl-N-methyltryptamine	C14H20N2O
136	Lryk	5-HO-DMT/Bufotenin/5-Hydroxy-N,N-dimethyltryptamine	C12H16N2O
137	- '	5-MeO-DALT/ 5-Methoxy-N,N-diallyltryptamine	C12H16N2O
138	-	AMT/alpha-Methyltryptamine	C11H14N2
139		DPT/N,N-dipropyltryptamine	C16H24N2
140	-	2-Furanylbenzylfentanyl	C23H24N2O2
141	-	2-methylacetylfentanyl	C22H28N2O
142	ids	3-Furanylfentanyl	C24H26N2O2
143	pio	3-Fluoromethoxyacetylfentanyl	C22H27FN2O2
144	ic o	3-methylcrotonylfentanyl	C24H30N2O
145	het	4-Fluorocyclopropylbenzylfentanyl	C22H25FN2O
146	, vut	4-FBF/4-Fluorobutyrfentanyl	C23H29FN2O
147	ers	4-FiBF/4-fluoroisobutyrfentanyl	C23H29FN2O
148	oth	4-Fluorofuranylfentanyl/4-F-FuF	C24H25FN2O2
149	pu	4-hydroxybutyrfentanyl/4-HO-BP	C23H30N2O2
150	82 S	Acetylbenzylfentanyl	C20H24N2O
151	lalo	Acrylfentanyl	C22H26N2O
152	lan	Benzodioxolefentanyl	C27H28N2O3
153	any	Benzoyloylbenzylfentanyl	C25H26N2O
154	ent	Benzylfentanyl	C21H26N2O
155		Benzylfuranylfentanyl	C23H24N2O2
156		Crotonylfentanyl	C23H28N2O
157		Cyclohexylfentanyl	C26H34N2O

158		Cyclopentylfentanyl	C25H32N2O
159		Despropionyl 2-fluorofentanyl	C19H23FN2
160		iBF/Isobutyrylfentanyl	C23H30N2O
161		Phenylfentanyl/Benzoylfentanyl	C26H28N2O
162		THF-F/Tetrahydrofuranylfentanyl	C24H30N2O2
163		Thienylfentanyl	C19H24N2OS
164		Thiophene fentanyl/2-Thiofuranylfentanyl	C24H26N2OS
165		2F-viminol	C21H31FN2O
166		2-methyl-AP-237	C18H26N2O
167		3,4-methylenedioxy-U-47700	C17H24N2O3
168		AH-7921	C16H22Cl2N2O
169		AP-237	C17H24N2O
170		AP-238	C18H26N2O
171		Bromadoline / U-47931E	C15H21BrN2O
172		Brorphine	C20H22BrN3O
173		Etazene/Etodesnitazene	C22H29N3O
174		etonitazepine/N-pyrrolidinetonitazene	C22H26N4O3
175		Furanyl UF-17	C19H24N2O2
176		Isopropyl-U-47700	C18H26Cl2N2O
177		Isotonitazene	C23H30N4O3
178		Metazene/Metodesnitazene	C21H27N3O
179		N-methyl bromadoline/N-Methyl U-47931E	C16H23BrN2O
180		nortilidine	C16H21NO2
181		O-AMKD	C16H21NO3
182		O-DT/O-desmethyltramadol	C15H23NO2
183		Piperidylthiambutene/Piperidinohton	C17H21NS2
184		Tianeptine	C21H25CIN2O4S
185		U-47700	C16H22Cl2N2O
186		U-48800	C17H24Cl2N2O
187		U-50488	C19H26Cl2N2O
188		U-51754	C17H24Cl2N2O
189		W-15	C19H21CIN2O2S
190	e	BZP/N-Benzylpiperazine	C11H16N2
191	azii	MBZP	C12H18N2
192	iper	тсрр	C10H13CIN2
193	<u>م</u>	TFMPP/ mTFMPP	C11H13F3N2
194	ine	Bromazolam	C17H13BrN4
195	zep	Clonazolam	C17H12CIN5O2
196	odia	Diclazepam	C16H12Cl2N2O
197	ozu	Etizolam	C17H16N4S
198	Be	Flualprazolam	C17H12ClFN4

199		Flubromazepam	C15H10BrFN2O
200		Flubromazolam	C15H10BrClN2O
201		Fluclotizolam	C15H10CIFN4S
202		Flunitrazolam	C17H12FN5O2
203		Fonazepam/Desmethylflunitrazepam	C15H10FN3O3
204		Nitrazolam	C17H13N5O2
205		Norfludiazepam	C15H10CIFN2O
206		Phenazepam	C15H10BrClO
207		2-FDCK/Fluoroketamine	C13H16FNO
208	nine	3-HO-PCE/3-hydroxyeticyclidine	C14H21NO
209	etar	3-HO-PCP/ 3-Hydroxyphencyclidine	C17H25NO
210	ne k	3-MeO-PCE/3-methoxyeticyclidine	C15H23NO
211	ami logu	3-MeO-PCP/ 3-Methoxyphencyclidine	C18H27NO
212	exyl ana	Deschloroketamine	C13H17NO
213	lohe	Hydroxetamine/HXE	C14H19NO2
214	lcyc	MXiPr/methoxisopropamine	C16H23NO2
215	Ary	MXPr/methoxpropamine	C16H23NO2
216		O-PCE/Deschloro-N-ethyl-ketamine/Eticyclodone	C14H19NO
217	norex /ative	4CI-MAR/4-chloromethylaminorex	C10H11CIN2O
218	Amir deriv	4Br-MAR/4-bromomethylaminorex	C10H11BrN2O
219		1-(1,3-diphenylpropan-2-yl)pyrrolidine	C19H23N
220	р	4F-EPH/4-fluoroethylphenidate	C15H20FNO2
221	le ar dine	4F-MPH/4-fluoromethylphenidate	C14H18FNO2
222	idin roli	DCMP/3,4-Dichloromethylphenidate	C14H17Cl2NO2
223	iper	DEP/diphenidine	C19H23N
224	ā	Isopropylphenidate	C16H23NO2
225		MXP/2-MeO-diphenidine	C20H25NO
226	e	2-AI/2-aminoindane	C9H11N
227	oindar	MDAI/5,6-Methylenedioxy-2-aminoindane	C10H11NO2
228	Amin	NM-2AI/N-methyl-2-aminoindane	C10H13N
229	ant- ased /Natu NPS	Ergine/LSA/Lysergic acid amine	C16H17N3O
230	PI ba NPS	Harmaline	C13H14N2O

231		Harmine	C13H12N2O
232		Ibogaine/12-Methoxyibogamine	C20H26N2O
233		Mesembrine	C17H23NO3
234		Mitragynine (Kratom)	C23H30N2O4
235		Salvinorin A (Salvia)	C23H28O8
236		1,3-DMAA / Dimethylamylamine/Methylhexanamine	C7H17N
237		1cP-LSD	C24H29N3O2
238		1p-LSD/1-propionyl LSD	C23H29N3O2
239		3-FPM/3F-Phenmetrazine	C11H14FNO
240		AL-LAD/6-allyl-6-nor-LSD	C22H27N3O
241		ALD-52/1-acetyl-LSD	C22H27N3O2
242		Amantadine	C10H17N
243	PS	CRL-40,028/Adrafinil	C15H15NO3S
244	er 2	CRL-40,941/Fladrafinil	C15H13F2NO3S
245	Oth	Dichloropane/RTI-111	C16H19Cl2NO2
246		DMC/Dimethocaine	C16H26N2O2
247		DMBA/N,N-Dimethylbutylamine	C6H15N
248		ETH-LAD/6-ethyl-6-nor-lysergic acid diethylamide	C21H27N3O
249		GHB/γ-hydroxybutyric acid	C4H7O3
250]	Phenibut	C10H13NO2
251]	Scopolamine	C17H21NO4
252]	Sibutramine	C17H27Cl2N
253]	Troparil	C16H21NO2